Inexactness of SDP Relaxation and Valid Inequalities for Optimal Power Flow
نویسندگان
چکیده
منابع مشابه
Inexactness of SDP Relaxation for Optimal Power Flow over Radial Networks and Valid Inequalities for Global Optimization
It has been recently proven that the semidefinite programming (SDP) relaxation of the optimal power flow problem over radial networks is exact in the absence of generation lower bounds. In this paper, we investigate the situation where generation lower bounds are present. We show that even for a two-bus one-generator system, the SDP relaxation can have all possible approximation outcomes, that ...
متن کاملNondegeneracy and Inexactness of Semidefinite Relaxations of Optimal Power Flow
The Optimal Power Flow (OPF) problem can be reformulated as a nonconvex Quadratically Constrained Quadratic Program (QCQP). There is a growing body of work on the use of semidefinite programming relaxations to solve OPF. The relaxation is exact if and only if the corresponding optimal solution set contains a rank-one matrix. In this paper, we establish sufficient conditions guaranteeing the non...
متن کاملOptimal inequalities for the power, harmonic and logarithmic means
For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملoptimal inequalities for the power, harmonic and logarithmic means
for all $a,b>0$, the following two optimal inequalities are presented: $h^{alpha}(a,b)l^{1-alpha}(a,b)geq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ h^{alpha}(a,b)l^{1-alpha}(a,b)leq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. here, $h(a,b)$, $l(a,b)$, and $m_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Power Systems
سال: 2016
ISSN: 0885-8950,1558-0679
DOI: 10.1109/tpwrs.2015.2402640