Inexactness of SDP Relaxation and Valid Inequalities for Optimal Power Flow

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inexactness of SDP Relaxation for Optimal Power Flow over Radial Networks and Valid Inequalities for Global Optimization

It has been recently proven that the semidefinite programming (SDP) relaxation of the optimal power flow problem over radial networks is exact in the absence of generation lower bounds. In this paper, we investigate the situation where generation lower bounds are present. We show that even for a two-bus one-generator system, the SDP relaxation can have all possible approximation outcomes, that ...

متن کامل

Nondegeneracy and Inexactness of Semidefinite Relaxations of Optimal Power Flow

The Optimal Power Flow (OPF) problem can be reformulated as a nonconvex Quadratically Constrained Quadratic Program (QCQP). There is a growing body of work on the use of semidefinite programming relaxations to solve OPF. The relaxation is exact if and only if the corresponding optimal solution set contains a rank-one matrix. In this paper, we establish sufficient conditions guaranteeing the non...

متن کامل

Optimal inequalities for the power, harmonic and logarithmic means

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

optimal inequalities for the power, harmonic and logarithmic means

for all $a,b>0$, the following two optimal inequalities are presented: $h^{alpha}(a,b)l^{1-alpha}(a,b)geq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ h^{alpha}(a,b)l^{1-alpha}(a,b)leq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. here, $h(a,b)$, $l(a,b)$, and $m_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Power Systems

سال: 2016

ISSN: 0885-8950,1558-0679

DOI: 10.1109/tpwrs.2015.2402640